
Basics	of	Inheritance

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	11.1	

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Key	Points	for	this	Module

• Inheritance	is	a	technique	for	generalizing	
over	common	parts	of	class	implementations.

• When	we	create	such	a	generalization,	we	
specialize	by	subclassing.

• Languages	with	inheritance	have	many	new	
design	choices.

2

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Module	11

3

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Divide	into	Cases

Call	a	more	
general	function

Communicate	
via	State

Recur	on	
subproblem

Key	Points	for	Lesson	11.1

• By	the	end	of	this	lesson	you	should	be	able	to	
explain	how	objects	find	methods	by	
searching	up	the	inheritance	chain.

• Use	the	overriding-defaults	pattern	to	
introduce	small	variations	of	a	class.

4

Example:	11-1-flashing-balls

• Sometimes	we	want	to	define	a	new	class	that	
is	just	a	small	variation	of	an	old	class.			

• For	example,	we	might	want	to	make	a	ball	
that	flashes	different	colors.		

• To	do	this,	create	a	subclass	that	inherits	from	
the	old	class	(the	"superclass").

• We	call	this	the	"overriding	defaults"	pattern.
• Let's	look	at	some	code.

5

FlashingBall%
;; FlashingBall% is like a Ball%, but it displays
;; differently: it changes color on every fourth tick

(define FlashingBall%
(class* Ball% ; inherits from Ball%
(SBall<%>) ; implements same interface

;; number of ticks between color changes
(field [color-change-interval 4])

;; time left til next color change
(field [time-left color-change-interval])

;; the list of possible colors, first elt is
;; current color
(field [colors (list "red" "green")])

;; here are fields of the superclass that we need.
(inherit-field radius x y selected?)

;; the init-field w isn’t declared here,
;; so it is sent to the superclass.
(super-new)

;; Scene -> Scene
;; RETURNS: a scene like the given one, but with the
;; flashing ball painted on it.
;; EFFECT: decrements time-left and changes colors if
;; necessary
(define/override (add-to-scene s)
(begin
;; is it time to change colors?
(if (zero? time-left)
(change-colors)
(set! time-left (- time-left 1)))

;; now paint this ball on the scene
(place-image
(circle radius
(if selected? "solid" "outline")
(first colors))

x y s)))

;; -> Void
;; EFFECT: rotate the list of colors,
;; and reset time-left
(define (change-colors)
(set! colors
(append (rest colors) (list (first colors))))

(set! time-left color-change-interval))

))

6

inherit-fields is	used	 to	declare	fields	
of	the	superclass	 that	we	want	to	

make	visible	 in	the	subclass

FlashingBall%	 inherits	from	Ball%.		
FlashingBall%	 is	the	subclass;	

Ball%	is	the	superclass

define/override is	used	 to	define	
methods	 that	override	methods	 in	the	

superclass

Features	for	Inheritance	in	Racket

• The	Racket	object	system	uses	two	features	to	
implement	inheritance:		define/override and	
inherit-fields.
– define/override is	used	to	define	methods	that	
override	methods	in	the	superclass.

– inherit-fields is	used	to	declare	fields	of	the	
superclass	that	we	want	to	make	visible	in	the	
subclass.		
• eg:	x,	y,	selected?,	radius in	FlashingBall%.		
• values	are	automatically	supplied	to	the	superclass	on	
initialization.

7

Other	languages	do	
this	differently,	 so	
watch	out!

What	fields	are	in	the	subclass?
• The	init-fields	of	a	subclass	are	the	init-fields	of	the	superclass	plus	any	

additional	init-fields	declared	in	the	subclass.			
• FlashingBall%	doesn't	declare	any	new	init-fields,	so	its	init-fields	are	the	

same	as	those	of	Ball%.		
• init-fields	of	the	subclass	are	automatically	sent	to	the	superclass,	so	when	

we	create	a	FlashingBall%,	we	write

(new FlashingBall% [x ...][y ...][speed ...])

• Those	values	become	the	values	for	the	fields	in	Ball%,	so	they	can	be	
used	by	the	methods	in	Ball%.	

• x	and	y	are	also	inherited	fields,	so	they	are	visible	to	the	methods	in	
FlashingBall%	as	well.

8

The	overriding-defaults	pattern

The	flashing	ball	was	an	example	of	the	overriding-
defaults pattern.		In	the	overriding-defaults	pattern:
• The	superclass	has	a	complete	set	of	behaviors
• The	subclass	makes	an	incremental	change	in	these	
behaviors	by	overriding	some	of	them.

9

How	does	inheritance	work?

• An	object	searches	its	inheritance	chain	for	a	
suitable	method.

• For	FlashingBall%	we	have
– FlashingBall%	inherits	from
– Ball%,	which	inherits	from
– object%

• but	the	chain	could	be	as	long	as	you	want.
• Here’s	an	example	(be	sure	to	watch	the	
animation):

10

Ball% =	(class*	object%	(...)	
(field	x	y	radius	selected?)

(define/public	 (on-tick)	...)
(define/public	 (on-mouse	 ...)	...)
(define/public	 (add-to-scene	s)	...)		...)

FlashingBall% =	(class*	Ball%	(...)
(inherit-field x	y	radius	selected?)
(field	 time-left	...)

(define/public	 (on-tick)	...)
(define/public	 (on-mouse	 ...)	...)

(define/override	 (add-to-scene	s)
(if	(zero?	time-left)	...)
(place-image	...	x	y	s))						...)

(define	b1	(new	FlashingBall%	...))

(send	b1	add-to-scene	s)

(send	b1	on-tick)

(send	b1	launch-missiles)

An	object	searches	its	inheritance	
chain	for	a	suitable	method

x	=	...
y	=	...
radius	=	...
selected?	=	...
time-left	=	...

b1

11

Inheritance	and	this

• If	a	method	in	the	superclass	refers	to	this,	
where	do	you	look	for	the	method?

• Answer:	in	the	original	object.
• Consider	the	following	class	hierarchy:

12

Ball% =	(class*	object%	(...)	
(field	x	y	radius	selected?)
(define/public	 (m1	x)	(send	 this	m2	x))
(define/public	 (m2	x)	“wrong”)

)

FlashingBall% =	(class*	Ball%	(...)

(define/override	 (m2	x)	“right”)
...)

(define	b1	(new	FlashingBall%	...))
(send	b1	m1	33)

Searching	for	a	method	of	this

x	=	...
y	=	...
radius	=	...
selected?	=	...
time-left	=	...

b1

13

When	we	send	b1 an	m1message,	what	
happens?
1) It	searches	its	own	methods	for	an	m1

method,	 and	finds	 none.
2) It	searches	it	superclass	 for	an	m1

method.		This	time	it	finds	 one,	which	
says	to	send	this an	m2 message.

3) this still	refers	to	b1.	So	b1 starts	
searching		for	an	m2 method.		

4) It	finds	 the	m2	method	in		its	local	table,	
and	returns	the	string	“right”.

super

• Sometimes	the	subclass	doesn’t	need	to	
change	the	behavior	of	the	superclass’s	
method;	instead	it	just	needs	to	add	behavior	
to	the	existing	method.

• (super	method args …)	calls	the	method	
named	method	in	the	superclass	of	the	class	
in	which	the	method	is	defined.

14

Use	case	for	super
(define the-superclass%
(class* object% ()
(define/public (m1 x)

(... big-hairy function of x ...))))

(define the-subclass%
(class* the-superclass% ()
(define/public (m1 x)

(... Same big hairy function,
but now of x+1 ...))))

15

We	don’t	 want	to	have	to	write	out	 the	
big	hairy	function	again.		Can	we	avoid	
this	repeated	code?

Use	case	for	super
(define the-superclass%
(class* object% ()
(define/public (m1 x)

(... big-hairy function of x ...))))

(define the-subclass%
(class* the-superclass% ()
(define/public (m1 x)

(super m1 (+ x 1)))))

16

This	calls	m1	in	the	superclass.

You	can	call	any	method	in	the	super

(define the-superclass%
(class* object% (...)
(define/public (m1 x)

(... big-hairy function of x ...))))

(define the-subclass%
(class* the-superclass% (...)
(define/public (m2 x)

(super m1 (+ x 1)))
(define/public (m1 x) "this is noise"))))

17

Here	method	m2 in	the	
subclass	calls	method	m1
in	the	superclass.

In	Racket,	you	 can't	call	(super	m1	...)	unless	m1 is	already	defined	 in	
the	current	class.			This	is	a	wart	in	the	Racket	object	system.		If	we	
were	in	a	different	system,	this	would	not	be	necessary.		Sorry	about	
that.

this and	super,	summarized

• The	rules	for	this	and	super	can	be	
summarized	as:

this is	dynamic,	super is	static	
• This	simple	rule	can	lead	to	interesting	
behavior
– Do	Guided	Practices	11.1	and	11.2	to	learn	more	
about	this.

• We	will	take	great	advantage	of	the	dynamic	
nature	of	this in	the	next	lesson.

18

Summary	of	Lesson	11.1

• We’ve	seen	how	to	define	superclasses and	
subclasses	in	Racket,	including	inherit-field
and	define/override.

• We’ve	seen	the	overriding-defaults	pattern,	in	
which	a	subclass	overrides	some	methods	of	a	
complete	superclass

• We		learned	how	this	works	with	inheritance,		
and	what	super does.

19

Next	Steps

• Study	11-1-flashing-balls.rkt	in	the	Examples	
folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board.

• Do	the	Guided	Practices	11.1	and	11.2
• Go	on	to	the	next	lesson

20

